Mouse Models for Studying Human Islet Transplantation

Ronald G. Gill, Joshua Beilke, Nathan Kuhl, Michelle Kerklo, and Mark M. Nicolls

Barbara Davis Center for Childhood Diabetes
University of Colorado Health Science Center
Can a mouse model form an in vivo ‘potency’ assay?
Mouse Models for Assessing Human Islet Function

• Immune-suppressed wild-type mice (e.g. anti-CD4)

• T cell-deficient nude (nu/nu) mice

• Severe-combined immune-deficient (SCID)

• Recombinase activating gene 1,2-deficient (Rag\(^{-/-}\))
Insulin *akita* Mutation

- Missense mutation (Cys96Tyr) in Insulin 2 (Ins 2) gene
- Prevents appropriate folding of pro-insulin
- Autosomal-dominant (chromosome 7)
- Functions as a ‘dominant-negative’
- Durable and irreversible hyperglycemia (>450-500mg/dl)
- Males more severe than females
Rag1⁻/⁻ akita Blood Glucose

![Graph showing blood glucose levels for Rag1⁻/⁻ akita](image1)

Rag1⁻/⁻ akita Weight Change

![Graph showing weight change for Rag1⁻/⁻ akita](image2)

SZ Blood Glucose

![Graph showing blood glucose levels for SZ](image3)

SZ Weight Change

![Graph showing weight change for SZ](image4)
Utility of *akita* mice as islet transplant recipients

Islet Function in C57Bl/6^{akita} Mice

<table>
<thead>
<tr>
<th>Donor</th>
<th>n</th>
<th>Graft Function (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOGRAFTS</td>
<td>8</td>
<td>> 100 (x8)</td>
</tr>
<tr>
<td>(C57Bl/6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLOGRAT»</td>
<td>3</td>
<td>9, 9, 12</td>
</tr>
<tr>
<td>(BALB/c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Islet Transplantation in B6 Rag1-/--akita Mice

Donor Islets

Transplant 2000 IEQ under the kidney capsule of B6 Rag1-/--akita

• Monitor blood glucose
• Nephrectomy – immunohistochemistry
Correlation between in vitro assays and in vivo function in *Rag1*^-/-*akita* mice

<table>
<thead>
<tr>
<th>Purity</th>
<th>Viability</th>
<th>S.I.</th>
<th>In vivo function (>30 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>60</td>
<td>1.6</td>
<td>Yes</td>
</tr>
<tr>
<td>90</td>
<td>80</td>
<td>3.0</td>
<td>Yes</td>
</tr>
<tr>
<td>80</td>
<td>75</td>
<td>5.2</td>
<td>Yes</td>
</tr>
<tr>
<td>85</td>
<td>72</td>
<td>2.4</td>
<td>Yes</td>
</tr>
<tr>
<td>90</td>
<td>70</td>
<td>2.4</td>
<td>Yes</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>0.8</td>
<td>No</td>
</tr>
<tr>
<td>60</td>
<td>77</td>
<td>0.2</td>
<td>No</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0.6</td>
<td>No</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>2.1</td>
<td>No</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>4.0</td>
<td>No</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>1.1</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Isolated Islets Highly Express Proteins Associated with ER-Distress

Function of Islet Grafts in Rag1-/- Recipients

<table>
<thead>
<tr>
<th>Donor</th>
<th>n</th>
<th>Graft Function (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>8</td>
<td>>100 (x 8)</td>
</tr>
<tr>
<td>Rat (WF)</td>
<td>9</td>
<td>>100 (x 9)</td>
</tr>
<tr>
<td>Porcine</td>
<td>12</td>
<td>>100 (x 12)</td>
</tr>
<tr>
<td>Human</td>
<td>17</td>
<td>47, 65, 74, 91, 94 >100 (x12)</td>
</tr>
</tbody>
</table>
Spontaneous Failure of Human Islets

Rag1^-/-*akita* Mice

Blood Glucose (mM)

- Human Islet Tp#1
- Human Islet Tp#2
- Normoglycemia

Day Post Transplantation
Pathology of Failed Human Islets (day 70)

Fibrosis (Tri-Chrome)

Amyloid (Thyoflavin S)
Failure of hIAPP Transgenic Mouse Islets

![Graph showing plasma glucose levels over time for 100 tg+ and 100 tg- groups.](image)

Plasma Glucose (mg/dl)

- **Day**

- **100 tg+**
- **100 tg-**

Legend:
- STZ
- Tx

- **Failure of hIAPP Transgenic Mouse Islets**
Islet Cell Attrition in Transplantation

1. Mechanical stress from islet isolation, infusion and implantation in ectopic site.
2. Non-immune response (Specific Aim 1)
3. Innate immune response (Specific Aim 2)
4. Adaptive immune response
 a. Autoimmune response
 b. Alloimmune response
5. Islet-toxic immunosuppression
6. Failure of islet revascularization

Figure 1. Factors influencing loss of islet cells following transplantation.
Summary / Conclusions

• Spontaneously diabetic akita mice demonstrate a stable and irreversible model of hyperglycemia

• Diabetic akita mice can be readily maintained for 2-3 months prior to transplantation

• Human islets can reverse diabetes in immune-deficient akita mice (Rag1^-/-akita)

• Human islets can spontaneously fail over time from non-immune factors (metabolic distress?)
Collaborators

Mark Nicolls
Michelle Kerklo
Gina Rayat
Josh Beilke
Nathan Kuhl