Adaptation of Islets to Pregnancy

Lessons from Islets as they adapt to pregnancy:

- Hormones and Lipids
- Insulin Secretion
 - Metabolism
 - Glucose
 - c-AMP
- Islet growth
 - mitosis
 - cell size
- Apoptosis
- Lipid plus Prolactin

Islet Adaptation to Pregnancy

Glucose-Stimulated Insulin Secretion and Islet Cell Proliferation During Pregnancy

Placental Lactogen Levels during Pregnancy and its Effects on Islets

Effects of Pregnancy and Lactogenic Hormones on Islets			
Islet structure and function	Pregnancy	PRL/PL	Serum Lipids
β-cell proliferation	+++	+++	
Islet volume	+++	+++	
Glucose stimulated insulin secretion	+++	+++	
Lower threshold for insulin secretion	+++	+++	
Insulin synthesis	+++	+++	
Insulin content	+++	+++	
β-cell junctional coupling	+++	+++	
Glucose utilization	+++	+++	
Glucose oxidation	+++	+++	
Glucokinase activity	+++	+++	
Glucose transporter 2	+++	+++	
c-AMP metabolism	+++	+++	
Anti-apoptosis	?	+++	

Prolactin Receptors in Islets and Prolactin Stimulated Stat5 Translocation in β-cells

Dose/Response for Prolactin Induced STAT5b Translocation and Changes in Islet Function

Lactogen (Pregnancy) Regulation of Insulin Secretion

- Decreased threshold for glucose stimulated insulin secretion
- Enhanced insulin secretion at normal glucose levels
- Evidence for regulation of insulin secretion during pregnancy by way of the prolactin receptor

Effect of Pregnancy & Prolactin on Glucose Stimulated Insulin Secretion

Effect of Pregnancy on Glucose metabolism and Insulin Secretion

Effect of PRL with '0' glucose on Islets

Lactogen (Pregnancy) Regulation of β-cell Growth

- β-cell growth during pregnancy
- Effect of prolactin and placental lactogen on β-cell growth
- Pulsed versus continuous stimulation by prolactin
- Islet mass and numbers during pregnancy
- β-cell size
- Role of prolactin regulation of cyclin D
- Comparison of prolactin to other β-cell growth factors

BrdU Labeled Nuclei in Islets

Control

Placental Lactogen

BrdU Labeled Nuclei in Islets

В Insulin Glucagon

Effect of Prolactin (continuous vs. pulsed) on BrdU Incorporation into Islets

48 hour experiment: pulsed treatment for 1 hour every 4 hours.

Number of Islets and Islet Volume in Pregnant Mice

Effect of Prolactin on β -cell Size in Islets

Effect of Prolactin on Cyclin D Expression in INS-1 Cells (24 hr. treatment)

Hormonal Regulation of β -cell Growth in Islets

Effect of Dexamethasone and Prolactin on Islet Cell Death

DEX + PRL

Dexamethasone 100 nM for 48 hours

Effect of Prolactin and Palmitate on Islet Cell Death

Placental lactogen and Prolactin Regulation of Insulin Secretion and β-cell Growth in Adult <u>Human</u> islets and Adult <u>Rat</u> islets in vitro

Human β -cell Studies with Prolactin

 Beneficial Effects of Prolactin and Laminin on Human Pancreatic Islet-cell Cultures: L. Labriola, W. Montor, K. Krogh, F. H. Lojudice, T. Genzini, A. C. Goldberg, F. G. Eliaschewitz, M. C. Sogayar, Molecular and Cellular Endocrinology 263 (2007) 120–133

Treatment of primary human islet cells with human prolactin results in:

- Increase in JAK-2 and Stat5 phosphorylation
- 3-fold increase in islet cell proliferation
- 3-fold increase in insulin content and RNA
- 5-fold increase in insulin secretion
- β-cell Specific cytoprotection by Prolactin on Human Islets: T. Yamamoto, C. Ricordi, A. Miki, Y. Sakuma, A. Mita, R.D. Molano, A. Fornoni, A. Pileggi, L. Inverardi and H. Ichii., Xenotransplantation 14 (2007) 457

Treatment of human islets with prolactin for 48 hours prior to treatment with noxious stimuli for 48 hours:

- Prolactin showed significant protective effects against SNAP, h₂0₂ and cytokines (IL-I-β, TNF-α and IFN-γ), but not hypoxia.
- Relative islet β-cell content increased 19%
- Relative viable β-cell mass incrased 28%
- 3. Others

Summary Effects of Prolactin Receptor Activation

- Increased glucose sensitivity
 - Glucokinase
 - Glucose oxidation
- Increased insulin secretion and insulin content
- Increased β-cell division
- Increased β-cell size
- Anti-apoptotic

Brelje, T.C., M.W. Wessendorf and R.L. Sorenson 1993 Multi-color laser scanning confocal immunofluorescence microscopy: Practical application and limitations. Methods in Cell Biology. 38:98-193.