In vivo multimodal imaging of transplanted islets

Anna Moore, Ph.D.

Molecular Imaging Laboratory

Athinoula A. Martinos Center for Biomedical Imaging

Massachusetts General Hospital Harvard Medical School

Why do we want to image transplanted islets?

- Difficult to image endogenous islets
- Lack of knowledge about specific beta-cell surface markers
- Nonexistent target-specific agents
- Easy to label exogenous islets
- In vivo imaging as a way to to monitor transplantation efficiency and graft survival

Table 1 Overview of high-resolution, small-animal imaging systems								
Technique	Resolution	Depth	Time	Imaging agents	Target*	Cost [‡]	Primary small- animal use	Clinical use
MR	10–100 μm	No limit	Minutes-hours	Gadolinium, dysprosium, ron oxide particles	A, P, M	\$\$\$	Versatile imaging modality with high soft-tissue contrast	Yes
CT	50 μm	No limit	Minutes	lodine	A, P	\$\$	Lung and bone imaging	Yes
Ultrasound	50 μm	Millimetres	Minutes	Microbubbles	A, P	\$\$	Vascular and interventional imaging	Yes
PET	1–2 mm	No limit	Minutes	¹⁸ F, ¹¹ C, ¹⁵ O	P, M	\$\$\$	Versatile imaging modality with many different tracers	Yes
SPECT	1–2 mm	No limit	Minutes	[⊛] nTc, ¹¹¹ In chelates	P, M	\$\$	Commonly used to image labelled antibodies, peptides and so on	Yes
FRI	2–3 mm	<1 cm	Seconds-minutes	Photoproteins (GFP), NIR fluorochromes	P, M	\$	Rapid screening of molecular events in surface-based turnours	Development
FMT	1 mm	<10 cm	Seconds-minutes	NIR fluorochromes	P, M	\$\$	Quantitative imaging of targeted or 'smart' fluorochrome reporters in deep turnours	Development
ВП	Several milimetres	Centimetres	Minutes	Luciferins	М	\$\$	Gene expression, cell and bacterial tracking	No
Intravital microscopy (confocal, multiphoton)	1 μm	<400 μm	Seconds-minutes	Photoproteins (GFP), Fluorochromes	P, M	\$\$\$	All of the above at higher resolutions but at limited depths and coverage	Limited development (skin)

[&]quot;Primary area that a given imaging modality interrogates: A, anatomical, M, molecular P, physiological. *Cost of system: \$ <100,000; \$\$ 100–300,000; \$\$: >300,000.

BLI, bioluminescence imaging; CT, X-ray computed tomography; FMT, fluorescence-mediated molecular tomography; FRI, fluorescence reflectance imaging; GFP, green fluorescent protein; NIR; near-infrared; MR, magnetic resonance; PET, positron emission tomography; SPECT, single-photon emission computed tomography.

Body window-enabled imaging of transplanted islets expressing an insulin-Timer fusion protein

Ins-C-Timer islet

Same islet after 24h exposure to IL-1β

In-vivo bioluminescence imaging of transplanted human islets

Light field photo

CCD imaging

Virostko et al, Mol Imaging, 2004

Superimposed images

Longitudinal BLI of transplanted islets

PET imaging of islet grafts

Islets express Adeno-sr39tk and probed with [18F]FHBG

Problems???

Lu Y et al, *PNAS*, 2006, 103:11294

MRI of encapsulated transplanted islets

Imaging of islets transplanted into the anterior chamber of the eye.

Speier et al, Nat Med, 2008, 14:574

Magnetic nanoparticles-Cy5.5 for islets labeling (MN-Cy5.5)

MR imaging

Near infrared fluorescence imaging (NIRF)

Feasibility MR imaging (4.7T)

Evgenov N., et al. In vivo imaging of islet transplantation. *Nature Medicine*, 2006, 12:144-148

Optical imaging of transplanted islets

Evgenov N., et al. In vivo imaging of islet transplantation. *Nature Medicine*, 2006, 12:144-148

In order to go to clinical trials:

1. Apply commercially available, FDA-approved contrast agent

Feridex®

2. Apply clinically-relevant intrahepatic model of islet transplantation

MRI of intrahepatic transplantation of islets labeled with FERIDEX®

Evgenov N et al, *Diabetes*, 2006, 55:2419-2418.

MRI of intrahepatic transplantation (FERIDEX®)

Evgenov N et al, *Diabetes*, 2006, 55:2419-2418.

Quantitation of islet loss

Challenges for translation: from mice to man (from 4.7T to 1.5T)

PROBLEMS:

- Signal-to-noise ratio (SNR)
- Magnetic susceptibility
- Resolution ($50x50x50 \mu m \text{ vs. } 1x1x1 \text{ mm}$)
- Field of view
- Clinical grade coils
- Data analysis

Summary

- Safe and effective way of islet labeling with superparamagnetic iron oxide nanoparticles
- Long-term monitoring by in vivo imaging
- Validation in non-human primate model
- Future: Clinical trials

Acknowledgments

Molecular Imaging Lab,

Martinos Center, MGH

Zdravka Medarova, PhD

Natalia Evgenov, MD

John Pratt, PhD

Simone Leyting, BS

Leonid Rashkovetsky, PhD

George Dai, PhD

Bruce Jenking Ph.D

Pam Pantazopouls, BS

Transplantation Biology

Research Center, MGH

David Sachs, MD

Prashanth Vallabhajosyula, MD

Atsushi Hirakata, MD

Aseda Tena, BS

Hanzhou Hong, MD

Matthew Weiss, MD

Crystal Araujo, BA

Steven Hatch, BA

Meghan Sheils, BA

Jim Winter, BA

Joslin Diabetes Center

Susan Bonner-Weir, PhD

Gordon Weir, MD

Jennifer Lock, BS

Vaja Tchipashvili, PhD

<u>Islet Resource Centers</u> supported by NIH, JDRF

Support from NIDDK: DK071225, DK072137, DK078615